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CONTEXT FREE GRAMMAR (CFG)

* A CFG is a way of describing languages by recursive rules
called productions.

* A CFG consists of a set of variables, a set of terminal
symbols, and a start variable, as well as the productions.

* Each production consists of a start variable and a body
consisting of a string of zero or more variables and /ot
terminals.




DEFINITION
A CFG is denoted as G = (V, T, P, S)
Where,

V —finite set of variables

T — finite set of terminals

P — finite set of productions
S — Start symbol
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USES OF CFG LANGUAGE

* Defining programming languages.

* Formalizing the notion of parsing.

* Translation of programming languages.

* String processing applications.




USES OF CONTEXT FREE GRAMMARS

* Construction of compilers.

* Simplified the definition of programming languages.

* Describes the arithmetic expressions with arbitrary
nesting of balanced parenthesis

* Describes block structure in programming languages.

* Model neural nets




LANGUAGE GENERATED BY CFG

* The language generated by Grammar G is L(G)
L(G) ={w | win T* and S *=>w }

* (1) The string contains only terminals.

®* (2) The string can be derived from start symbol S.




Sentential Form

* Any step in a derivation is a string of

terminal and / or variables.

* We call such a string a sentential form.




Left and right sentential form

Left Sentential Form:

° If the string a can be generated from the starting symbol by using
left most derivation, such that S==> « is left sentential form.

Right Sentential Form:

° If the string a can be generated from the starting symbol by using
rightmost derivation, such that S==> « is right sentential form.




Derivation

* Let G = (V, T, P, S) be the context free grammatr.

* Beginning with the start symbol, we derive terminal strings by
repeatedly replacing a variable by the body of some
production with that variable in the head.

* If A—f is a production of P and
* a and b are any strings in (VUT)* then
Ay abY




SUB TREE

* A subtree of a derivation tree is a particular vertex of the

tree together with all its descendants, the edges
connecting them and their labels.

* The label of the root may not be the start symbol of the
grammar




PARSE TREES

* The strings that are derived from the CFG can be represented in a tree
format known as Parse tree or derivation tree.

* Types:
* Jeftmost detivation Tree

* Rightmost derivation Tree
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Example For Leftmost And Rightmost
Derivations

* Derive the strings a*(a+b00) using leftmost and
rightmost derivation for the following production.

el E I 2 E SHEIE 3. E > E*E 4, E — (E)

5 1—a 6.1 —b 7.1 — Ia 8.1 — 1Ib
°9.I1—->10 10.I1—-1I1




AMBIGUITY IN GRAMMARS AND
LANGUAGES

* A grammar is said to be ambiguous if it has more than one derivation trees
for a sentence or in other words if it has more than one leftmost derivation
or more than one rightmost dertvation.

* A string w 1s derived ambiguously in context-free grammar G if it has two or
more different leftmost derivations. Grammar G is ambiguous if it generates
some string ambiguously.




Sometimes an ambiguous grammar can be transformed into an
unambiguous grammar for the same language.

Some context-free grammars can be generated only by ambiguous
grammars. These are known as inherently ambiguous languages.
L={abc|i=jorj=k}

A context free language L is said to be inherently ambiguous if all
its grammars are ambiguous grammat.

If even one grammar for L is unambiguous then L 1s an
unambiguous language.

Inherent ambiguous grammars are one for which unambiguous

grammars do not exist.




Show that the grammar S — a | abSb | aAb,
A — bS | aAAb is ambiguous.




DEFINITION OF THE PUSHDOWN
AUTOMATA

* A PDA is a nondeterministic finite automaton coupled with a stack that can
be used to store a string of arbitrary length.

* The stack can be read and modified only at its top.




A PushDown Automata M is a system (Q, X, I, 6, qo, Zo, F)
Where,

v Q is a finite set of states.

v X is an alphabet called the input alphabet.
v' T is an alphabet called stack alphabet.

v goin Q is called initial state.
v Zoin I is start symbol in stack.
v' Fis the set of final states.

v' 8 is a mapping from Q X (X U {€} ) X T to finite subsets
of Q X I'*,




Transition Diagram and Transition
Function of PDA

T'he transition diagram for PDA’s in which

The nodes correspond to the states of the PDA

An arrow labeled Start indicates the start states, and doubly circled states are
accepting as for finite automata.

Transition Function: 6 (q, a, X) = (p, ®)

Start

@ — @
¢ labeled 2 | o froi state a to state n niEms that




Moves of Pushdown Automata

°* A PDA chooses its next move based on its current state, the
next input symbol, and the symbol at the top of its stack.

* It may also choose to make a move independent of the input
symbol and without consuming that symbol from the input.




Types of moves in PDA

* The move dependent on the input symbol (a) scanned is:

* &(q, 2, Z)={ (p1, v1), (p2,y2),.....(pm,ym ) } Where

* q and p are states,

® A 1S I

* Z is a stack symbol and

° y.is in I'*,

* PDA is in state q, with input symbol a and Z the top
symbol on state enter state pi and replace symbol Z by

string .




Types of moves in PDA

* The move independent on input symbol is (E-move):

* 6(q,€,Z) = { (pLyl), (p2,y2), (pm,ym) §
* Is that PDA is in state q,

* independent of input symbol being scanned and with Z
the top symbol on the stack

* enter a state pi and

* replace Z by yi.




Types of language acceptances by a PDA

*1. Acceptance by Final State

* 2. Acceptance by Empty Stack




For a PDA M=(Q, X .I' ,6 ,q0,Z0 ,F) we define :

1. Acceptance by Final State:
LP)={w | (q0,w,Z0) }(p,€,y) for some p in F

and any stack string y }.

2. Acceptance by Empty Stack:
N(P) = { w | (@0, w, Z0) | (p, €, €) for any state q}.




Is It true that the language accepted by a PDA by
empty stack and final states are different
languages?

No, because the languages accepted by PDA‘s by

final state are exactly the languages accepted by
PDA’s by empty stack.




Instantaneous Description (ID) in PDA

* ID represents the configuration of a PDA by a triple (q, w, y),
& Whete

* & gi1s the state,

* [l wis the remaining input, and

* [] vy 1is the stack contents.




ID consisting of the state, remaining input, and stack contents to
describe the “current condition” of a PDA.

A transition function |— between
PDA.

IfM=(Q, X, 1,6, q0, Z0, F) be a PDA. If 6 (q, a, X) contains (p, o).

’s represents single moves of a

Then for all string w in £* and [ in I'*.

> (g, aw, X B) | (p, W, ap)

This move reflects the idea that, by consuming a from the input and
replacing X on top of the stack by a, we can go from state g to state

P.




Significance of PDA

* Finite Automata is used to model regular expression
and cannot be used to represent non regular
languages.

* Thus to model a context free language, a Pushdown
Automata is used.




String accepted by a PDA

The input string is accepted by the PDA if:
* The final state is reached.

* The stack is empty.




Examples of languages handled by PDA

° (1) L = {a"b" | n>=0}, here n is unbounded, hence
counting cannot be done by finite memory. So we
require a PDA, a machine that can count without

limit.
°* (2) L = {ww® | w €{a,b}*}, to handle this language
we need unlimited counting capability .




Is NPDA (Nondeterministic PDA) and
DPDA (Deterministic PDA) equivalent?

* The languages accepted by NPDA and DPDA
are not equivalent.

* Example:

* wwR is accepted by NPDA and not by any
DPDA.




State the equivalence of acceptance by final
state and empty stack

° If L =L(M2) for some PDA M2, then L = N(M1) for some PDA
M1I.

° If L =N(M1) for some PDA M1, then L = L(M2 ) for some PDA
M2.

°* Where,
* L(M) = language accepted by PDA by reaching a final state.
* N(M) = language accepted by PDA by empty stack.




Problem : Design PDA to accept the
language L={wcw® / w={0,1}*}
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Bl Non Recursive Enumerable (RE) Languages

e A language is said to be recursive if there exists a turing machine that accepts
every string of the language and every string is rejected if it is not belonging to
that language.

W |——————— Accept
Input string —— > Reject

Fig. 5.1.1 Recursive languages

* A language is recursively enumerable if there exists a turing machine that accepts
every string belonging to that language. And if the string does not belong to that
language then it can cause a turing machine to enter in an infinite loop.

w Accept

> ™
Input string

—————— Loops for ever

Fig. 5.1.2 Recursively enumerable languages
X Properties of Recursive and Recursively Enumerable Languages

* The recursively enumerable (RE) languages are categorized into two classes :
1. The class of languages that has turing machine. This turing machine decides
whether the input string belongs to that language or not. Such a turing
machine always halts, whether or not it reaches to accept state.

2. The second class of languages consists of those RE languages that are not
accepted by any turing machine with the guarantee of halting.
* A language is L actually denoted by L(M) called recursive. If it is accepted by
some turing machine such that
L. If string W is in L, turing machine M accepts it and then halts.

2. IfWisnotinL, then M eventually halts although it never enters in accepting
states. -

* We can also call recursive languages as the definite Ianguages or the languages
which can be represented by some algorithm and such an algorithm helps in
construction of turing machine for that language.

Decidable and Undecidable Languages :

e If a language is recursive then it is called decidable languages and if the language
is not recursive then such a language is called undecidable language.

e Hence broadly there are three categories of the languages.
1. Recursive language for which the algorithm exists.

2. Recursively enumerable language for which it is not sure that on which input
the TM will ever halt. Such languages are not recursive. |
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3. The non-recursively enumerable languages for which there is no turing
machine at all.

* Fig. 52.1 shows the relationship between these languages.

Non-recursively enumerable language

Recursively enumerabie and not recursive ;T;i’;‘éﬂ;ﬁ:&
language , enumerable set
has recursive
subset.
Recursive
language

Fig. 5.2.1 Relationship between languages

* The important fact about recursive and recursively enumerable languages can be
seen with the help of following theorem.

Theorem 1 : If L is recursive language then L' is‘also a recursive language.

Proof :

Let there will be some L that can be accepted by turing machine M. Hence we can
denote language L by L(M). On acceptance of L(M) the machine M always halts. Now,
we construct a TM M’ such that L' = (M). for construction of M' following steps are
followed :

1. The accepting steps of M are made non-accepting states of M' and there is no
transition from M'. That means we have created the states such that M' will halt
without accepting.

2. Now create a new accepting state for M'

say r and there is no transition from r.
3. In machine M, for each of the transition o] Tufing Accept — - Reject
. . s . machine M ;
with combination of nonaccepting state 7 Reject ——u Accept
and input tape symbol, make the same Turing machine M

transition having the combination of
accepting state and input tape symbol
for machine M.

Since M is guaranteed to halt M' is also guaranteed to halt. In fact, M’ accepts exactly
those strings that M does not accept. Thus we can say that M" accepts 1.,

Fig. 5.2.2 Construction of M ' accepting L'
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T EE——— n L is a recursiy
Theorem 2 : |f 4 language 1. and its complement L' both are RE the ¢

language. I -

Proof :
Consider a turing  machine M ™
made up of two turing machines ol M1 |—— Accept > Accept
M1 and M2. The machine M2 is ——
complement of machine M1. We  (Binary string]
can also denote that L(M) = L(M1) o P e ™ Reject
and L(M2). Both M1 and M2 are Complemented TM
simulated in parallel by machine
M. Machine M is a two tape TM, Fig. 5.2.3

which can be made one tape TM for the ease of simulation. This One tape then wil]
consist of tape of machine M1 and machine M2. The states of M consists of all the states
of machine M1 and all the states of machine M2. The machine M made up of M1 and
M2 is as shown in Fig. 5.2.3.

If the input W of language L is given to M then M1 will eventually accept and
therefore M will accept L and halt. If w is not in L, then it is in L. So M2 will accept
and therefore M will half without accepting. Thus on all inputs, M halts. Thus L(M) is
exactly L. Since M always halts we can conclude that L(M) mean L is a recursive
language. Thus a recursive language can be recursively enumerable but a recursively
enumerable language is not necessarily be recursive.

3 Theorem 3 : Show that if L; and L, are recursive languages then L; U L, and
L; n L, also recursive.

Proof : Let,
L; is a recursive language. w - M, Accept —— - Accept
(Input string) No
Ly is a recursive language. M, i
Start » Reject
As L; and L, are recursive M
languages there exists a machine M, ‘ Fig. 5.2.4

that accepts L as well as machine

M; that accepts L,. Now, we have to simulate a machine (algorithm) M that accepts the
language L such that

L = L; U L. Then construct machine M which accepts if M; accepts. The construction
of M is as shown in following Fig. 5.2.4.

If machine My does not accept then M, simulates M. That means if M, accepts then
M accepts, if My rejects M also rejects. Thus M accepts the language L = 1., | L, which
is recursive. A

/’—,—/\M"—‘ e —— o




o e r———

To prove Ly nL, as a recursive language consider machine M that accepts the
language L such that L = L, " L,.

Accept - Accept
We L M, Reject M, - Rejoct

M

M; is a TM which accepts ., and M, is a TM which accepts L. The ™ M is
simulated which halts on accepting w € L such that L = L; N L,. Hence intersection of
two recursive languages is also recursive.

Theorem 4 : If L1 and L2 are two recluswe languages and if L is defined as :
= {w| wisin L1 and not in L2 and not in L1}. Prove or disprove that

L is recursive.

Proof :
e Let L1 is a recursive language which is v
accepted by M1 and L2 is a recursive language Yes - Nn - Yos
which is accepted by M2. Languages L1 and w—= M, No: M2 fves | o

L2 are such that if w € L1 then w ¢ L2.
Similarly if w ¢ L1 then w € L2.

e Find L = L1 u L2, We can then design a
TM M which accepts the language L. Such a TM can be drawn as follows :

e As the language L is accepted by TM M, we can say that the language L is

recursive language.

Theorem 5 : Show that the set of languages L over {0, 1} so that neither L nor L' is

i recursively enumerable in uncountable.

Proof :
e If there is any language L which is recursively enumerable then there exists a TM

which semidecides it (either accepts and halt or loops for ever).

e Every TM has description of finite length. Hence number of TM and number of
recursively enumerable languages is countably. infinite, because power set of every
countable set is countably infinite. Now, for the language L its complement L' is
RE. Then for L' also there exists TM which semidecides it. But there are
uncountable number of languages. Hence there may be language L and L' which
are not recursively enumerable. And there may be uncountable number of such

languages. Hence neither L nor L' is RE in uncountable.




Tractable and Intractable Problems

e The class of solvable problems is known as decidable problems. That means
decidable problems can be solved in measurable amount of time or space. A

e The tractable problems are the class of problems that can be solved within
reasonable time and space. For example - Sorting a list, multiplication of integers.

The intractable problems are the class of problems that can be solved within
polynomial time. For example - List of all permutations of n numbers, Tower of
Hanoi. This has lead to two classes of solving problems - P and NP class

problems.
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UNIT -V

POST CORRESPONDANCE PROBLEM

(PCP)




DEFINITION OF POST'S CORRESPONDENCE PROBLEM

An instance of Post's Correspondence Problem (PCP) consists of two lists of
strings over some alphabet %.

The two lists must be of equal length.

We generally refer to the A and B lists, and write A=wl, w2.... wk and B=xI,
x2.... xk for some integer k.

For each i, the pair (wi, xi) is said to be a corresponding pair.

We say this instance of PCP has a solution, if there is a sequence of one or
more integers il ,i2,....im that, when interpreted as indexes for strings in the A
and B lists, yield the same string.

That is, wil, wi2.....wim, = xil, xi2,..... xim.

We say the sequence il ,i2,....im is a solution to this instance of PCP.



EXAMPLE I:

Let 2 = {0,1},and let the A and B lists be as defined in the following Figure.
Given an instance of PCP tell whether this instance has a solution.

List A | List B
[/ Wi Li

11 111

2 | 10111 | 10

31|10 0




EXAMPLE I:

= First we take the strings from the list A and B which starts
from same symbol.

= WI and x| & w2 and x2 starts with same symbol |.
= String 3 w3 and x3 starts with different symbol.
m So let start with string 2.

wi |0l
Xi 10



EXAMPLE I:

= Next choose the string starts with 1.Again we can choose
either | or 2.

= Here w2 has more symbols. So we will choose 1.

N I N A N

w 10111\

111



= Again in wi, | is remaining. So we have to choose string which
starts with | from xi.

= Let choose again .

Wi 10111
Xi 10 11 11



* Now in xi, | is remaining. So we have to choose string which

starts with | from wi.
* Let choose string 3.i.e: w3 and x3.

wi 10111

m\\q\ 4

That 1s, w2. wl. wl. w3 = x2. x1. x1. x3 =101111110



For instance, let m =4, 1=2,12=1,15=1,and 14= 3
(1.e.,) the solution is the list 2, 1, 1, 3
PCP has solution (11,12,13,i14) = (2,1,1,3)

Note this solution is not unique.
For instance, 2,1, 1, 3, 2, 1, 1, 3 is another solution.



EXAMPLE 2:

Let X ={0,1}, A={1,0,010,11} B={ 10,10,01,1}. Given an instance
of PCP, tell whether this instance has a solution.

* First we take the strings from the list A and B which starts
from same symbol.

* WI and x| & w3 and x3 & w4 and x4 starts with same symbol
| and 0.

* String 2 w2 and x2 starts with different symbol.

* So let start with string |.

* Take wl and xI.



T
Wi 1

XI 10

* Next choose the string starts with 0 in w.
 Either 2"9 string or 3" string.
* So now we can choose string 2.

i1 2
Wi 1 0

XI 10 10



Now the string in X remains. 01.
Now choose string in w starts with 1.
Again we can choose either 1 or 4.
So we will choose 1.

i 12 1
w1 0 1

X| 10 10 10




* Now the string in X remains. 010

* Now choose string in w starts with 0.
« Again we can choose either 2 or 3.

* So we will choose 3.

i 12 1 3
wi 1 0 1 010

xi 10 10 10 01




* Now the string in X remains. 01

* Now choose string in w starts with 0.
« Again we can choose either 2 or 3.

* So we will choose 3.

010
xi 10 10 10 0 01



* Now the string in X remains. 1

* Now choose string in w starts with 1.
« Again we can choose either 1 or 4.

* So we will choose 3.

Wi 010 0 O

Xi 10/ 101/0% T 6 1 /

That i1s, wl. w2. wl. w3. w3. w4 = x1. x2. x1. x3. x3. x4 =10101001011



 For Instance, let m = 6,
e 1=1,12=2,15=1,14=3,1:= 3, I, =4

* (l.e.,) the solution is the list 1,2,1,3,3,4

PCP has solution (i1,i2,i3,i4,i5,i6) = (1,2,1,3,3,4)
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N

i Wi X
1 11 111
2 100 001

3 111 11



EEEDED  EEECEIRET
| Wi X | Yi Z;

11 111 1 1*1* *1*1*1
100 001 2 1*0*0*  *0*0*1
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MODIFIED PCP

= While considering y0,y2,y3 = z0,z2,z3, both are equal.
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