
UNIT III

CONTEXT FREE GRAMMAR

AND LANGUAGES

CONTENTS

CFG
 CFG

 Parse Trees

 Ambiguity in Grammars and Languages

PUSHDOWN AUTOMATA
 Definition of the Pushdown Automata

 Languages of a Pushdown Automata

 Equivalence of Pushdown Automata and CFG, Deterministic

Pushdown Automata.

CONTEXT FREE GRAMMAR (CFG)

• A CFG is a way of describing languages by recursive rules
called productions.

• A CFG consists of a set of variables, a set of terminal
symbols, and a start variable, as well as the productions.

• Each production consists of a start variable and a body
consisting of a string of zero or more variables and /or
terminals.

DEFINITION

A CFG is denoted as G = (V, T, P, S)

Where,

V →finite set of variables

T → finite set of terminals

P → finite set of productions

S → Start symbol

USES OF CFG LANGUAGE

• Defining programming languages.

• Formalizing the notion of parsing.

• Translation of programming languages.

• String processing applications.

USES OF CONTEXT FREE GRAMMARS

• Construction of compilers.

• Simplified the definition of programming languages.

• Describes the arithmetic expressions with arbitrary
nesting of balanced parenthesis

• Describes block structure in programming languages.

• Model neural nets

LANGUAGE GENERATED BY CFG

• The language generated by Grammar G is L(G)

L(G) = {w | w in T* and S *=>w }

• (1) The string contains only terminals.

• (2) The string can be derived from start symbol S.

Sentential Form

•Any step in a derivation is a string of

terminal and / or variables.

•We call such a string a sentential form.

Left and right sentential form

Left Sentential Form:

• If the string a can be generated from the starting symbol by using

left most derivation, such that S==> α is left sentential form.

Right Sentential Form:

• If the string a can be generated from the starting symbol by using

rightmost derivation, such that S==> α is right sentential form.

Derivation
• Let G = (V, T, P, S) be the context free grammar.

• Beginning with the start symbol, we derive terminal strings by

repeatedly replacing a variable by the body of some

production with that variable in the head.

• If A→β is a production of P and

• a and b are any strings in (VUT)* then

• α A γ → α β γ

SUB TREE

• A subtree of a derivation tree is a particular vertex of the

tree together with all its descendants, the edges

connecting them and their labels.

• The label of the root may not be the start symbol of the

grammar

PARSE TREES

• The strings that are derived from the CFG can be represented in a tree

format known as Parse tree or derivation tree.

• Types:

• Leftmost derivation Tree

• Rightmost derivation Tree

Example For Leftmost And Rightmost

Derivations

• Derive the strings a*(a+b00) using leftmost and

rightmost derivation for the following production.

• 1. E →I 2. E →E+E 3. E → E*E 4. E → (E)

• 5. I → a 6. I → b 7. I → Ia 8. I → Ib

• 9. I → I0 10. I → I1

AMBIGUITY IN GRAMMARS AND

LANGUAGES

• A grammar is said to be ambiguous if it has more than one derivation trees
for a sentence or in other words if it has more than one leftmost derivation
or more than one rightmost derivation.

• A string w is derived ambiguously in context-free grammar G if it has two or
more different leftmost derivations. Grammar G is ambiguous if it generates
some string ambiguously.

 Sometimes an ambiguous grammar can be transformed into an

unambiguous grammar for the same language.

 Some context-free grammars can be generated only by ambiguous

grammars. These are known as inherently ambiguous languages.

 L = { ai bj ck | i = j or j = k }

 A context free language L is said to be inherently ambiguous if all

its grammars are ambiguous grammar.

 If even one grammar for L is unambiguous then L is an

unambiguous language.

 Inherent ambiguous grammars are one for which unambiguous

grammars do not exist.

Show that the grammar S → a | abSb | aAb,

A → bS | aAAb is ambiguous.

DEFINITION OF THE PUSHDOWN

AUTOMATA

• A PDA is a nondeterministic finite automaton coupled with a stack that can

be used to store a string of arbitrary length.

• The stack can be read and modified only at its top.

A PushDown Automata M is a system (Q, Σ, Ґ, δ, q0, Z0, F)

Where,

 Q is a finite set of states.

 Σ is an alphabet called the input alphabet.

 Ґ is an alphabet called stack alphabet.

 q0 in Q is called initial state.

 Z0 in Ґ is start symbol in stack.

 F is the set of final states.

 δ is a mapping from Q X (Σ U {Є}) X Ґ to finite subsets

of Q X Ґ*.

Transition Diagram and Transition

Function of PDA
• The transition diagram for PDA’s in which

• The nodes correspond to the states of the PDA

• An arrow labeled Start indicates the start states, and doubly circled states are

accepting as for finite automata.

• Transition Function: δ (q, a, X) = (p, α)

Moves of Pushdown Automata

• A PDA chooses its next move based on its current state, the

next input symbol, and the symbol at the top of its stack.

• It may also choose to make a move independent of the input

symbol and without consuming that symbol from the input.

Types of moves in PDA
• The move dependent on the input symbol (a) scanned is:

• δ(q, a, Z)={ (p1, γ1), (p2,γ2),…..(pm,γm) } Where

• q and p are states,

• a is in Σ,

• Z is a stack symbol and

• γi is in Ґ*.

• PDA is in state q, with input symbol a and Z the top

symbol on state enter state pi and replace symbol Z by

string γi

Types of moves in PDA

• The move independent on input symbol is (Є-move):

• δ(q,Є,Z) = { (p1,γ1), (p2,γ2),…………(pm,γm) }

• Is that PDA is in state q,

• independent of input symbol being scanned and with Z

the top symbol on the stack

• enter a state pi and

• replace Z by γi.

Types of language acceptances by a PDA

• 1. Acceptance by Final State

• 2. Acceptance by Empty Stack

For a PDA M=(Q, Σ ,Ґ ,δ ,q0 ,Z0 ,F) we define :

1. Acceptance by Final State:

L(P)={ w | (q0 , w , Z0) ├ (p, Є , γ) for some p in F

and any stack string γ }.

2. Acceptance by Empty Stack:

N(P) = { w | (q0, w, Z0) ├ (p, Є, Є) for any state q}.

Is it true that the language accepted by a PDA by

empty stack and final states are different

languages?

No, because the languages accepted by PDA‘s by

final state are exactly the languages accepted by

PDA’s by empty stack.

Instantaneous Description (ID) in PDA

• ID represents the configuration of a PDA by a triple (q, w, γ),

• Where,

• q is the state,

• w is the remaining input, and

• γ is the stack contents.

• ID consisting of the state, remaining input, and stack contents to

describe the “current condition” of a PDA.

• A transition function├ between ID’s represents single moves of a

PDA.

• If M = (Q, Σ, Ґ, δ, q0, Z0, F) be a PDA. If δ (q, a, X) contains (p, α).

• Then for all string w in Σ* and β in Г*.

• (q, aw, X β) ├ (p, w, αβ)

• This move reflects the idea that, by consuming a from the input and

replacing X on top of the stack by α, we can go from state q to state

p.

Significance of PDA

• Finite Automata is used to model regular expression

and cannot be used to represent non regular

languages.

• Thus to model a context free language, a Pushdown

Automata is used.

String accepted by a PDA

The input string is accepted by the PDA if:

• The final state is reached.

• The stack is empty.

Examples of languages handled by PDA

• (1) L = {anbn | n>=0}, here n is unbounded, hence
counting cannot be done by finite memory. So we
require a PDA, a machine that can count without
limit.

• (2) L = {wwR | w Є{a,b}*}, to handle this language
we need unlimited counting capability .

Is NPDA (Nondeterministic PDA) and

DPDA (Deterministic PDA) equivalent?

• The languages accepted by NPDA and DPDA

are not equivalent.

• Example:

• wwR is accepted by NPDA and not by any

DPDA.

State the equivalence of acceptance by final

state and empty stack

• If L = L(M2) for some PDA M2 , then L = N(M1) for some PDA
M1.

• If L = N(M1) for some PDA M1 , then L = L(M2) for some PDA
M2.

• Where,

• L(M) = language accepted by PDA by reaching a final state.

• N(M) = language accepted by PDA by empty stack.

Problem : Design PDA to accept the

language L={wcwR / w={0,1}*}

5.1 Non Recursive Enumerable (RE) Languages

A language is said to be recursive if there exists a turing machine that accepts
every string of the language and every string is rejected if it is not belonging to

that language.

Accept
TM

Input string Reject

Fig. 5.1.1 Recursive languages

A language is recursively enumerable if there exists a turing machine that accepts
every string belonging to that language. And if the string does not belong to that
language then it can cause a turing machine to enter in an infinite loop.

Accept w
TM

Input string9 Loops for ever

Fig. 5.1.2 Recursively enumerable languages
5.2 Properties of Recursive and Recursively Enumerable Languages

The recursively enumerable (RE) languages are categorized into two classes:
The class of languages that has turing machine. This turing machine decides

whether the input string belongs to that language or not. Such a turing
machine always halts, whether or not it reaches to accept state.

1.

2. The second class of languages consists of those RE languages that are not
accepted by any turing machine with the guarantee of halting.

A language is L actually denoted by L(M) called recursive. If it is accepted by
some turing machine such that

1. If string W is in L, turing machine M accepts it and then halts.

If W is not in L, then M eventually halts although it never enters in accepting 2
states.

We can also call recursive languages as the definite languages or the languages
which can be represented by some algorithm and such an algorithm helps in
construction of turing machine for that language.

Decidable and Undecidable Languages
If a language is recursive then it is called decidable languages and if the language

is not recursive then such a language is called undecidable language.
Hence broadly there are three categories of the languages.
1. Recursive language for which the algorithm exists.

Recursively enumerable language for which it is not sure that on which input 2
the TM will ever halt. Such languages are not recursive.

3. The non-recursively enumerable languages for which there is no ulrg machine at all.

Fig. 5.2.1 shows the relationship between these languages.

Non-recursively enumerable language

This shows that Recursively enumerable and not recursive
language every recursively

enumerable set
has recursive

subset. Recursive
languagee

Fig. 5.2.1 Relationship between languages
The important fact about recursive and recursively enumerable languages can be

seen with the help of following theorem.

Theorem 1: If L is recursive language then L' is also a recursive language.
Proof

Let there will be some L that can be accepted by turing machine M. Hence we caan denote language L by L{M). On acceptance of L{M) the machine M always halts. Now, we construct a TM M such that L' = (M). for construction of M following steps are followed

1. The accepting steps of M are made non-accepting states of M and there is no transition from M. That means we have created the states such that M' will halt without accepting.

2. Now create a new accepting state for M
say r and there is no transition from r.

3. In machine M, for each of the transition Accept Reject Turing
machine M

Reject
with combination of nonaccepting state
and input tape symbol, make the same

transition having the combination of

accepting state and input tape symbol

Accept
Turing machine M

Fig. 5.2.2 Construction of M' accepting L'
for machine M.

Since M is guaranteed to halt M' is also guaranteed to halt. In fact, M accepts exactlu those strings that M does not accept. Thus we can say that M accepts L'

neorem 2:If a language I. and its complement L' both are RE then L 1s a recursive

language.
Proof

Consider a turing machine M
made up of two turing machines

TM
M1 Accept- Accept M1 and M2. The machine M2 is

Input w
[Binary string) complement of machine M1. We

can also denote that L{M) = L{M1)
and L(M2). Both M1 and M2 are
simulated in parallel by machine
M. Machine M is a two tape TM,

L Accept Reject

Complemented TM

Fig. 5.2.3

which can be made one tape TM for the ease of simulation. This One tape then will
consist of tape of machine M1 and machine M2. The states of M consists of all the states
of machine M1 and all the states of machine M2. The machine M made up of M1 and
M2 is as shown in Fig. 5.2.3.

If the input W of language L is given to M then M1 will eventually accept and
therefore M will accept L and halt. If w is not in L, then it is in L'. So M2 will accept and therefore M will half without accepting. Thus on all inputs, M halts. Thus L{M) is
exactly L. Since M always halts we can conclude that L(M) mean L is a recursive
language. Thus a recursive language can be recursively enumerable but a recursivelyenumerable language is not necessarily be recursive.
Theorem 3 Show that if L; and L2 are recursive languages then Ly U L2 and

L nL2 also recursive.

Proof Let,

L is a recursive language. Accept Accept
w

(Input string9)
No

Accept L2 is a recursive language. Ma Start Reject As L and L2 are recursive

languages there exists a machine M1
that accepts Li as well as machine
M1 that accepts L2. Now, we have to simulate a machine (algorithm) M that accepts the

M

Fig. 5.2.4

language L such that

L L1 u L2. Then construct machine M which accepts if M1 accepts. The constructionof M is as shown in following Fig. 5.2.4.

If machine M1 does not accept then M2 simulates M. That means if M2 accepts then
M accepts, if M2 rejects M also rejects. Thus M accepts the language L = Li UL, which
is recursive.

lo prove LjnL2 as a recursive language consider machine M that accepts the

language L such that L = LinL2.

Accept Accept
WeL M Reject Rejet

M

M1 is a TM which accepts L and M2 is a TM which accepts L2. The TM M 1s

simulated which halts on accepting w e L such that L L1n L2. Hence intersectiorn of

two recursive languages is also recursive.

Theorem 4 : If L1 and L2 are two recursive languages and if L is defined as

L = {w w is in Li and not in L2 and not in L1}. Prove or disprove that

L is recursive.

Proof

Let L1 is a recursive language which is M
accepted by M1 and L2 is a recursive language

which is accepted by M2. Languages L1 and
No Yes

M W No
L2 are such that if w eE L1 then we L2.

Similarly if we L1 then we L2.

Find L = L1 U L2. We can then design a

TM M which accepts the language L. Such a TM can be drawn as follows:

As the language L is accepted by TM M, we can say that the language L is

recursive language.

Theorem 5 Show that the set of languages L over {0, 1} so that neither L nor L' is

recursively enumerable in uncóuntable.

Proof

.If there is any language L which is recursively enumerable then there exists a TM
which semidecides it (either accepts and halt or loops for ever).

Every TM has description of finite length. Hence number of TM and number of

recursively enumerable languages is countably. infinite, because power set of every

countable set is countably infinite. Now, for the language L its complement L' is

RE. Then for L' also there exists TM which semidecides it. But there are

uncountable number of languages. Hence there may be language L and L' which

are not recursively enumerable. And there may be uncountable number of such

languages. Hence neither L nor L' is RE in uncountable.

TM

5.3 Tractable and Intractable Problems AU Dec.-15, 16, May-17, Marks 16

The class of solvable problems is known as decidable problems. That means

decidable problems can be solved in measurable amount of time or space.

The tractable problems are the class of problems that can be solved within

reasonable time and space. For example - Sorting a list, multiplication of integers.
The intractable problems are the class of problems that can be solved within

polynomial time. For example - List of all permutations of n numbers, Tower of

Hanoi. This has lead to two classes of solving problems P and NP class

problemns.

UNIT-V

HALTING PROBLEM

UNIT -V

POST CORRESPONDANCE PROBLEM

(PCP)

DEFINITION OF POST'S CORRESPONDENCE PROBLEM

 An instance of Post's Correspondence Problem (PCP) consists of two lists of

strings over some alphabet Σ.

 The two lists must be of equal length.

 We generally refer to the A and B lists, and write A=w1, w2…. wk and B=x1,

x2…. xk for some integer k.

 For each i, the pair (wi , xi) is said to be a corresponding pair.

 We say this instance of PCP has a solution, if there is a sequence of one or

more integers i1 ,i2,…. im that, when interpreted as indexes for strings in the A

and B lists, yield the same string.

 That is, wi1, wi2….. wim, = xi1, xi2,….. xim.

 We say the sequence i1 ,i2,…. im is a solution to this instance of PCP.

EXAMPLE 1:

Let Σ = {0,1}, and let the A and B lists be as defined in the following Figure.

Given an instance of PCP, tell whether this instance has a solution.

EXAMPLE 1:

 First we take the strings from the list A and B which starts

from same symbol.

 W1 and x1 & w2 and x2 starts with same symbol 1.

 String 3 w3 and x3 starts with different symbol.

 So let start with string 2.

 Take w2 and x2. i 2

wi 10111

xi 10

EXAMPLE 1:

 Next choose the string starts with 1. Again we can choose

either 1 or 2.

 Here w2 has more symbols. So we will choose 1.

i 2 1

wi 10111 1

xi 10 111

 Again in wi, 1 is remaining. So we have to choose string which

starts with 1 from xi.

 Let choose again 1.

i 2 1 1

wi 10111 1 1

xi 10 111 111

• Now in xi, 1 is remaining. So we have to choose string which

starts with 1 from wi.

• Let choose string 3. i.e: w3 and x3.

i 2 1 1 3

wi 10111 1 1 10

xi 10 111 111 0

That is, w2. w1. w1. w3 = x2. x1. x1. x3 = 101111110

• For instance, let m = 4, i1 = 2, i2 = 1, i3 = 1, and i4 = 3

• (i.e.,) the solution is the list 2, 1, 1, 3

PCP has solution (i1,i2,i3,i4) = (2,1,1,3)

• Note this solution is not unique.

• For instance, 2, 1, 1, 3, 2, 1, 1, 3 is another solution.

EXAMPLE 2:

Let Σ = {0,1}, A= {1,0,010,11} B={ 10,10,01,1}. Given an instance

of PCP, tell whether this instance has a solution.

• First we take the strings from the list A and B which starts

from same symbol.

• W1 and x1 & w3 and x3 & w4 and x4 starts with same symbol

1 and 0.

• String 2 w2 and x2 starts with different symbol.

• So let start with string 1.

• Take w1 and x1.

i 1

wi 1

xi 10

• Next choose the string starts with 0 in w.

• Either 2nd string or 3rd string.

• So now we can choose string 2.

i 1 2

wi 1 0

xi 10 10

• Now the string in x remains. 01.

• Now choose string in w starts with 1.

• Again we can choose either 1 or 4.

• So we will choose 1.

i 1 2 1

wi 1 0 1

xi 10 10 10

• Now the string in x remains. 010

• Now choose string in w starts with 0.

• Again we can choose either 2 or 3.

• So we will choose 3.

i 1 2 1 3

wi 1 0 1 010

xi 10 10 10 01

• Now the string in x remains. 01

• Now choose string in w starts with 0.

• Again we can choose either 2 or 3.

• So we will choose 3.

i 1 2 1 3 3

wi 1 0 1 010 010

xi 10 10 10 01 01

• Now the string in x remains. 1

• Now choose string in w starts with 1.

• Again we can choose either 1 or 4.

• So we will choose 3.

i 1 2 1 3 3 4

wi 1 0 1 010 010 11

xi 10 10 10 01 01 1

That is, w1. w2. w1. w3. w3. w4 = x1. x2. x1. x3. x3. x4 = 10101001011

• For instance, let m = 6,

• i1 = 1, i2 = 2, i3 = 1, i4 = 3, i5 = 3, i6 =4

• (i.e.,) the solution is the list 1,2,1,3,3,4

PCP has solution (i1,i2,i3,i4,i5,i6) = (1,2,1,3,3,4)

MODIFIED PCP

List A (C) List B (D)

i wi xi

1 11 111

2 100 001

3 111 11

List A List B

i wi xi

1 11 111

2 100 001

3 111 11

List C List D

i yi zi

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

List A List B

i wi xi

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

List C List D

i yi zi

0 *1*1* *1*1*1

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

Add row as y0 = *y1 , z0 = z1

List A List B

i wi xi

0 *1*1* *1*1*1

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

List C List D

i yi zi

0 *1*1* *1*1*1

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

4 $ *$

Add row as yk+1 = $ and zk+1 = *$

MODIFIED PCP

 While considering y0,y2,y3 = z0,z2,z3, both are equal.

yi = zi

*1*1*1*0*0*1*1*1*$ = *1*1*1*0*0*1*1*1*$

J C u te qramrnas SS+Ss Ss
Shou hat Gi s Cmbiqueuus

Soluiom

Conside he String a * a* a

Jtmos t Desivaton 4 LMD IK

S S *S S->S *S

=> 3*S * S S S*S
S

= a S*S S Oa

S

= a* a *S S>a

aa* a S a

Ltmest Deivati on 2 MD rcee 2

S S*S S->S*S

S Qa
*

a S*S S S*S

a* aAS S a

a*ax a S->a

Sn c theRo as oLMD iTces t

AS amrgLeus Aarnmai

Solu tio ,In id

MD)

ldte

id E

id tid id

TV2 2

MD2

E E E EXE

+EXE

ic+ t

iid E

Shou tul F E+EEEEic

biCquOus

Soluo Strn = d+id id

D E+E E E+E

idtE
EXE

id +EE

id +1d *E

id +id id E id

TelA

id

JMD 2

E+EXE

i E E

i

Shew al FEEEEEiol s

a Show

um biquOus

Soluion string id +id id

D F E +E E E +E

id E E io

id+E E

id d E

id t id id i

TV.ce 2

a. Showtha F E+E | E* E(E)iol e

rn biqLDUs3

Solutiono
Strine = td +id * id.

MD) F E +E
E E+E

to
ld +E

id +E E

E id
id + id * id

TVee 2

TTee

TT I.

E

E

E

E
E

La

MD2

F E* E
F EE

E4E*E
E 6 +6

=id +¬ * E
lo+id * E

6 td

F-id

io

(T)
CFG1TO DA

Jet G1 (V,T, P. s) h a CF
L(G) b

Cons4r u ct Re PDA P hat accepk (b) b

emp SBacr a ollows

VUT, , V,S P-(f9. T
2 Co, Zo

P

who-
-vuT,

Zo S

S dekine d b

oR 2ach Vaunable A,

St, E, A) = (9, p) whn A>B s a produchic)

Que ue
terninal Srbol a

&,a, a) 9, E)

Coneul he granm aA CF G1 a PDA

F E +E - id

Solui on
Jt Gt ho a cFG Gt V, T, P, s)

(whee V-{E y, T {+,idy. s-{t
The equivalent PDA guen by anb

P-(T, vUT .s,,S)
P 1.t, id y{t, id, t'}, &, q,E)

nd S

oA tAmLndlS +, id

S(9,a,a) , E)

S(,4,+) (,E)

id S(,id,id)> (4,E)

Joa Non 1ninals '

3 A B Aan S(o, E, A) = ,P)

) $F F->E+E hen S(,e, E) - ,+E)
) 3 Fid tkan (,E, E) - (,idA)

Che Ck ha i/p id +id id n N(P)

t id 4 id idN

id 4id 4id, F)E, id a id d, E4E

S4ala, yp sinq u, SAast sqmbs)

,id 4idid, id4E)

F(+id 4id +E)

, id 4id,t)

d 4 id, E +E)

, td4id, id4E)

,id,e)

+(. E)
ifp Sumboh &4a Ck a ermp

h d aid 4id isacceplad ba caply Slack.

Convat the ga S 0Si|A

A>1Ao| s into a PDA that accepta the

Same anguage by mptt stac. . CheC

whethan O1O longs 4 NCP)

Solutiom

et Gt a CFG G (V,T, P, s)

whaxe V{ s, a y. T °,,s = s.
b

Th equivalent PDA a quan by

P-(fao,1y {sA,o,1y, S,, s)
7/4, vuT/r S, o,Zo

nd S
ter tosminals ,1

o teimuna

S(, a ,a) -> ,e)
& (a, o,o)>(, ¬) |

er ouinal '

s(a,) (, e)

es Non eminal s sA

3 A B an &(, E, A)=(, B) *

to Non TeAmenal S

5S S oS1|A hen &(4,e,S)= (,os1),(4, A)

tor N on Taminal A

34 A IAols]£ then

S (,e, A) -,1A),(, S) (4, e)

Che CKna

,olO.S) -(, o1cl, S)
Sta, u

, Stat Val

9, o101, oSi)

E , lol, S1)

, lo, 1Ao1)

, al, Ao)

(, l, Eoi)

F ,01, o1

(,)

-,E, E)
OO NCP) .

PDA TO CFGT

*el PDA be P (G,,CS.90, Zo,F)

dt CF01 he G -(V, T, P.S)

wheeT-4y S

Vasiabe u ad up ob &Fa)

V

S4te slack.alpha hot siate

And all poSsibla Combtna-ions osiat

tn

To slproduckon

& (ao, o. zo) = azo)

Zo

eS(o,a , Zo) = (qn, axx)

1 , JL*J o Zo

FRTo jnel V
, 4.} \a a

Stale Stack ophakat

(1), a

a4). [a a .]

,, a possible ombinat
Stales .) (. . 2,21

hoblem A: Convant a qiuan PDA n e CFG.

o, a, Zo) -o, a Zo)

, a,a) = (qo, aa
) , b, a) =(, E)

wSl4,b a) -(, E)

V&(, E,Z)=(. E)
Su1
dt PDA ,3,1,a,b,ozo)

q0,Z 4)

et C e (VT.) e
V

Noe

Aexe i1o, ,raTo
Stale sAackalp Slal

o),),

,,

(ao)
9aJ,

oo,

a Zo

To ind Pdaeton

'

&(qo, ,Zo) - 96, a lo)

7--a -ze
Zo ->a aJL-Z -JS

Z ->a so a -]- 2 -J

Zo-J->a -JL- Zo -

Zo -)->a a Zo

Zo Ja a JL 7e 3
o Zo J->a o aJL Zo

9 a l a aJ J

(Zo a [a 9Jf Z
t L zo 1 aLo a a jf Zo «

Zo a. a J(.zo]
* Zo a Zo1

(1o (, ,a)(qo, aa)
|o a a aJ

a a 3,ao

9oa9 3 a 3 a 4]
]sa o a 3 a7

3) 80,b, aj 4,E)

0 a b

) S (1, b, a) : (,E)

5)S 1,t, z.)= (,E)

&esunq Vosiable producton bo iKe

Stet vaA >t, Stack, stJ

>, Zo ,9.] S

Zo,

T Rakdart CFG GVT, P, S) tu
V a)o Zo],o a].fc~

a9 Z] (a] (4z.].s}
T-a,b S Stet sumb

Zo (a Zo e]

Zo a 3,zo

a9) a (o o]o a J

. [ta,J.]
a ae a4Ja j

Zo E

Zo 9)
S o)

yw-.

