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CONTEXT FREE GRAMMAR (CFG)

• A CFG is a way of  describing languages by recursive rules 
called productions. 

• A CFG consists of  a set of  variables, a set of  terminal 
symbols, and a start variable, as well as the productions. 

• Each production consists of  a start variable and a body 
consisting of  a string of  zero or more variables and /or 
terminals.



DEFINITION

A CFG is denoted as G = (V, T, P, S) 

Where, 

V →finite set of  variables

T → finite set of  terminals 

P → finite set of  productions

S → Start symbol 







USES OF CFG LANGUAGE

• Defining programming languages. 

• Formalizing the notion of  parsing. 

• Translation of  programming languages. 

• String processing applications. 



USES OF CONTEXT FREE GRAMMARS

• Construction of  compilers. 

• Simplified the definition of  programming languages. 

• Describes the arithmetic expressions with arbitrary 
nesting of  balanced parenthesis 

• Describes block structure in programming languages. 

• Model neural nets 



LANGUAGE GENERATED BY CFG 

• The language generated by Grammar G is L(G) 

L(G) = {w | w in T* and S *=>w } 

• (1) The string contains only terminals. 

• (2) The string can be derived from start symbol S. 



Sentential Form

•Any step in a derivation is a string of  

terminal and / or variables. 

•We call such a string a sentential form. 



Left and right sentential form

Left Sentential Form:

• If  the string a can be generated from the starting symbol by using 

left most derivation, such that S==> α is left sentential form. 

Right Sentential Form: 

• If  the string a can be generated from the starting symbol by using 

rightmost derivation, such that S==> α is right sentential form.



Derivation
• Let G = (V, T, P, S) be the context free grammar. 

• Beginning with the start symbol, we derive terminal strings by 

repeatedly replacing a variable by the body of  some 

production with that variable in the head. 

• If  A→β is a production of  P and 

• a and b are any strings in (VUT)* then

• α A γ → α β γ 



SUB TREE

• A subtree of  a derivation tree is a particular vertex of  the 

tree together with all its descendants, the edges 

connecting them and their labels.

• The label of  the root may not be the start symbol of  the 

grammar



PARSE TREES

• The strings that are derived from the CFG can be represented in a tree 

format known as Parse tree or derivation tree.

• Types:

• Leftmost derivation Tree

• Rightmost derivation Tree

























Example For Leftmost And Rightmost 

Derivations

• Derive the strings a*(a+b00) using leftmost and 

rightmost derivation for the following production.

• 1. E →I 2. E →E+E 3. E → E*E 4. E → (E) 

• 5. I → a 6. I → b 7. I → Ia 8. I → Ib

• 9. I → I0 10. I → I1 



AMBIGUITY IN GRAMMARS AND 

LANGUAGES 

• A grammar is said to be ambiguous if  it has more than one derivation trees 
for a sentence or in other words if  it has more than one leftmost derivation 
or more than one rightmost derivation. 

• A string w is derived ambiguously in context-free grammar G if  it has two or 
more different leftmost derivations. Grammar G is ambiguous if  it generates 
some string ambiguously. 



 Sometimes an ambiguous grammar can be transformed into an 

unambiguous grammar for the same language. 

 Some context-free grammars can be generated only by ambiguous 

grammars. These are known as inherently ambiguous languages. 

 L = { ai bj ck | i = j or j = k } 

 A context free language L is said to be inherently ambiguous if  all 

its grammars are ambiguous grammar. 

 If  even one grammar for L is unambiguous then L is an 

unambiguous language. 

 Inherent ambiguous grammars are one for which unambiguous 

grammars do not exist. 



Show that the grammar S → a | abSb | aAb,

A → bS | aAAb is ambiguous. 



DEFINITION OF THE PUSHDOWN 

AUTOMATA

• A PDA is a nondeterministic finite automaton coupled with a stack that can 

be used to store a string of  arbitrary length. 

• The stack can be read and modified only at its top.



A PushDown Automata M is a system (Q, Σ, Ґ, δ, q0, Z0, F)

Where, 

 Q is a finite set of states. 

 Σ is an alphabet called the input alphabet. 

 Ґ is an alphabet called stack alphabet. 

 q0 in Q is called initial state. 

 Z0 in Ґ is start symbol in stack.

 F is the set of final states. 

 δ is a mapping from Q X ( Σ U {Є} ) X Ґ to finite subsets 

of Q X Ґ*. 



Transition Diagram and Transition 

Function of  PDA
• The transition diagram for PDA’s in which 

• The nodes correspond to the states of  the PDA 

• An arrow labeled Start indicates the start states, and doubly circled states are 

accepting as for finite automata. 

• Transition Function: δ (q, a, X) = (p, α)



Moves of  Pushdown Automata

• A PDA chooses its next move based on its current state, the 

next input symbol, and the symbol at the top of  its stack. 

• It may also choose to make a move independent of  the input 

symbol and without consuming that symbol from the input.



Types of  moves in PDA
• The move dependent on the input symbol (a) scanned is: 

• δ(q, a, Z)={ (p1, γ1), (p2,γ2),…..(pm,γm ) } Where

• q and p are states,

• a is in Σ, 

• Z is a stack symbol and 

• γi is in Ґ*. 

• PDA is in state q, with input symbol a and Z the top 

symbol on state enter state pi and replace symbol Z by 

string γi



Types of  moves in PDA

• The move independent on input symbol is (Є-move): 

• δ(q,Є,Z) = { ( p1,γ1 ), ( p2,γ2 ),…………( pm,γm ) }

• Is that PDA is in state q,

• independent of  input symbol being scanned and with Z 

the top symbol on the stack 

• enter a state pi and 

• replace Z by γi.



Types of  language acceptances by a PDA

• 1. Acceptance by Final State

• 2. Acceptance by Empty Stack



For a PDA M=(Q, Σ ,Ґ ,δ ,q0 ,Z0 ,F ) we define : 

1. Acceptance by Final State: 

L(P)={ w | (q0 , w , Z0 ) ├ ( p, Є , γ ) for some p in F 

and any stack string γ }. 

2. Acceptance by Empty Stack: 

N(P) = { w | (q0, w, Z0) ├ ( p, Є, Є ) for any state q}. 



Is it true that the language accepted by a PDA by 

empty stack and final states are different 

languages? 

No, because the languages accepted by PDA‘s by 

final state are exactly the languages accepted by 

PDA’s by empty stack. 



Instantaneous Description (ID) in PDA

• ID represents the configuration of  a PDA by a triple (q, w, γ), 

• Where, 

• q is the state, 

• w is the remaining input, and 

• γ is the stack contents. 



• ID consisting of the state, remaining input, and stack contents to 

describe the “current condition” of a PDA. 

• A transition function├ between ID’s represents single moves of a 

PDA. 

• If M = (Q, Σ, Ґ, δ, q0, Z0, F) be a PDA. If δ (q, a, X) contains (p, α). 

• Then for all string w in Σ* and β in Г*. 

• (q, aw, X β) ├ (p, w, αβ) 

• This move reflects the idea that, by consuming a from the input and 

replacing X on top of the stack by α, we can go from state q to state 

p. 



Significance of  PDA

• Finite Automata is used to model regular expression 

and cannot be used to represent non regular 

languages. 

• Thus to model a context free language, a Pushdown 

Automata is used. 



String accepted by a PDA

The input string is accepted by the PDA if: 

• The final state is reached. 

• The stack is empty. 



Examples of  languages handled by PDA

• (1) L = {anbn | n>=0}, here n is unbounded, hence 
counting cannot be done by finite memory. So we 
require a PDA, a machine that can count without 
limit. 

• (2) L = {wwR | w Є{a,b}*}, to handle this language 
we need unlimited counting capability . 



Is NPDA (Nondeterministic PDA) and 

DPDA (Deterministic PDA) equivalent? 

• The languages accepted by NPDA and DPDA 

are not equivalent. 

• Example: 

• wwR is accepted by NPDA and not by any 

DPDA. 



State the equivalence of  acceptance by final 

state and empty stack 

• If  L = L(M2) for some PDA M2 , then L = N(M1) for some PDA 
M1. 

• If  L = N(M1) for some PDA M1 , then L = L(M2 ) for some PDA 
M2.

• Where,

• L(M) = language accepted by PDA by reaching a final state. 

• N(M) = language accepted by PDA by empty stack. 



Problem : Design PDA to accept the 

language L={wcwR / w={0,1}*} 



5.1 Non Recursive Enumerable (RE) Languages 

A language is said to be recursive if there exists a turing machine that accepts 
every string of the language and every string is rejected if it is not belonging to 

that language. 

Accept 
TM 

Input string Reject 

Fig. 5.1.1 Recursive languages 

A language is recursively enumerable if there exists a turing machine that accepts 
every string belonging to that language. And if the string does not belong to that 
language then it can cause a turing machine to enter in an infinite loop.

Accept w 
TM 

Input string9 Loops for ever 

Fig. 5.1.2 Recursively enumerable languages 
5.2 Properties of Recursive and Recursively Enumerable Languages 

The recursively enumerable (RE) languages are categorized into two classes: 
The class of languages that has turing machine. This turing machine decides 

whether the input string belongs to that language or not. Such a turing 
machine always halts, whether or not it reaches to accept state. 

1. 

2. The second class of languages consists of those RE languages that are not 
accepted by any turing machine with the guarantee of halting. 

A language is L actually denoted by L(M) called recursive. If it is accepted by 
some turing machine such that 

1. If string W is in L, turing machine M accepts it and then halts. 

If W is not in L, then M eventually halts although it never enters in accepting 2 
states. 

We can also call recursive languages as the definite languages or the languages 
which can be represented by some algorithm and such an algorithm helps in 
construction of turing machine for that language. 

Decidable and Undecidable Languages 
If a language is recursive then it is called decidable languages and if the language 

is not recursive then such a language is called undecidable language. 
Hence broadly there are three categories of the languages. 
1. Recursive language for which the algorithm exists. 

Recursively enumerable language for which it is not sure that on which input 2 
the TM will ever halt. Such languages are not recursive. 



3. The non-recursively enumerable languages for which there is no ulrg machine at all. 

Fig. 5.2.1 shows the relationship between these languages. 

Non-recursively enumerable language 

This shows that Recursively enumerable and not recursive 
language every recursively 

enumerable set 
has recursive 

subset. Recursive 
languagee 

Fig. 5.2.1 Relationship between languages 
The important fact about recursive and recursively enumerable languages can be 

seen with the help of following theorem. 

Theorem 1: If L is recursive language then L' is also a recursive language. 
Proof 

Let there will be some L that can be accepted by turing machine M. Hence we caan denote language L by L{M). On acceptance of L{M) the machine M always halts. Now, we construct a TM M such that L' = (M). for construction of M following steps are followed 

1. The accepting steps of M are made non-accepting states of M and there is no transition from M. That means we have created the states such that M' will halt without accepting. 

2. Now create a new accepting state for M 
say r and there is no transition from r. 

3. In machine M, for each of the transition Accept Reject Turing 
machine M 

Reject 
with combination of nonaccepting state 
and input tape symbol, make the same 

transition having the combination of 

accepting state and input tape symbol 

Accept 
Turing machine M 

Fig. 5.2.2 Construction of M' accepting L' 
for machine M. 

Since M is guaranteed to halt M' is also guaranteed to halt. In fact, M accepts exactlu those strings that M does not accept. Thus we can say that M accepts L' 



neorem 2:If a language I. and its complement L' both are RE then L 1s a recursive 

language. 
Proof 

Consider a turing machine M 
made up of two turing machines 

TM 
M1 Accept- Accept M1 and M2. The machine M2 is 

Input w 
[Binary string) complement of machine M1. We 

can also denote that L{M) = L{M1) 
and L(M2). Both M1 and M2 are 
simulated in parallel by machine 
M. Machine M is a two tape TM, 

L Accept Reject 

Complemented TM 

Fig. 5.2.3 

which can be made one tape TM for the ease of simulation. This One tape then will 
consist of tape of machine M1 and machine M2. The states of M consists of all the states 
of machine M1 and all the states of machine M2. The machine M made up of M1 and 
M2 is as shown in Fig. 5.2.3. 

If the input W of language L is given to M then M1 will eventually accept and 
therefore M will accept L and halt. If w is not in L, then it is in L'. So M2 will accept and therefore M will half without accepting. Thus on all inputs, M halts. Thus L{M) is 
exactly L. Since M always halts we can conclude that L(M) mean L is a recursive 
language. Thus a recursive language can be recursively enumerable but a recursivelyenumerable language is not necessarily be recursive. 
Theorem 3 Show that if L; and L2 are recursive languages then Ly U L2 and 

L nL2 also recursive. 

Proof Let, 

L is a recursive language. Accept Accept 
w 

(Input string9) 
No 

Accept L2 is a recursive language. Ma Start Reject As L and L2 are recursive 

languages there exists a machine M1 
that accepts Li as well as machine 
M1 that accepts L2. Now, we have to simulate a machine (algorithm) M that accepts the 

M 

Fig. 5.2.4 

language L such that 

L L1 u L2. Then construct machine M which accepts if M1 accepts. The constructionof M is as shown in following Fig. 5.2.4. 

If machine M1 does not accept then M2 simulates M. That means if M2 accepts then 
M accepts, if M2 rejects M also rejects. Thus M accepts the language L = Li UL, which 
is recursive. 



lo prove LjnL2 as a recursive language consider machine M that accepts the 

language L such that L = LinL2. 

Accept Accept 
WeL M Reject Rejet 

M 

M1 is a TM which accepts L and M2 is a TM which accepts L2. The TM M 1s 

simulated which halts on accepting w e L such that L L1n L2. Hence intersectiorn of 

two recursive languages is also recursive. 

Theorem 4 : If L1 and L2 are two recursive languages and if L is defined as 

L = {w w is in Li and not in L2 and not in L1}. Prove or disprove that 

L is recursive. 

Proof 

Let L1 is a recursive language which is M 
accepted by M1 and L2 is a recursive language 

which is accepted by M2. Languages L1 and 
No Yes 

M W No 
L2 are such that if w eE L1 then we L2. 

Similarly if we L1 then we L2. 

Find L = L1 U L2. We can then design a 

TM M which accepts the language L. Such a TM can be drawn as follows: 

As the language L is accepted by TM M, we can say that the language L is 

recursive language. 

Theorem 5 Show that the set of languages L over {0, 1} so that neither L nor L' is 

recursively enumerable in uncóuntable. 

Proof 

.If there is any language L which is recursively enumerable then there exists a TM 
which semidecides it (either accepts and halt or loops for ever). 

Every TM has description of finite length. Hence number of TM and number of 

recursively enumerable languages is countably. infinite, because power set of every 

countable set is countably infinite. Now, for the language L its complement L' is 

RE. Then for L' also there exists TM which semidecides it. But there are 

uncountable number of languages. Hence there may be language L and L' which 

are not recursively enumerable. And there may be uncountable number of such 

languages. Hence neither L nor L' is RE in uncountable. 

TM 



5.3 Tractable and Intractable Problems AU Dec.-15, 16, May-17, Marks 16 

The class of solvable problems is known as decidable problems. That means 

decidable problems can be solved in measurable amount of time or space. 

The tractable problems are the class of problems that can be solved within 

reasonable time and space. For example - Sorting a list, multiplication of integers. 
The intractable problems are the class of problems that can be solved within 

polynomial time. For example - List of all permutations of n numbers, Tower of 

Hanoi. This has lead to two classes of solving problems P and NP class 

problemns. 



UNIT-V

HALTING PROBLEM 























UNIT -V

POST CORRESPONDANCE PROBLEM

( PCP ) 



DEFINITION OF POST'S CORRESPONDENCE PROBLEM 

 An instance of Post's Correspondence Problem (PCP) consists of two lists of 

strings over some alphabet Σ.

 The two lists must be of equal length. 

 We generally refer to the A and B lists, and write A=w1, w2…. wk and B=x1, 

x2…. xk for some integer k. 

 For each i, the pair (wi , xi) is said to be a corresponding pair. 

 We say this instance of PCP has a solution, if there is a sequence of one or 

more integers i1 ,i2,…. im that, when interpreted as indexes for strings in the A 

and B lists, yield the same string. 

 That is, wi1, wi2….. wim, = xi1, xi2,….. xim. 

 We say the sequence i1 ,i2,…. im is a solution to this instance of PCP.



EXAMPLE 1:

Let Σ = {0,1}, and let the A and B lists be as defined in the following Figure. 

Given an instance of PCP, tell whether this instance has a solution. 



EXAMPLE 1:

 First we take the strings from the list A and B which starts 

from same symbol.

 W1 and x1 & w2 and x2 starts with same symbol 1.

 String 3 w3 and x3 starts with different symbol.

 So let start with string 2. 

 Take w2 and x2. i 2

wi 10111

xi 10



EXAMPLE 1:

 Next choose the string starts with 1. Again we can choose 

either 1 or 2.

 Here w2 has more symbols. So we will choose 1.

i 2 1

wi 10111 1

xi 10 111



 Again in wi, 1 is remaining. So we have to choose string which 

starts with 1 from xi. 

 Let choose again 1.

i 2 1 1

wi 10111 1 1

xi 10 111 111



• Now in xi, 1 is remaining. So we have to choose string which 

starts with 1 from wi. 

• Let choose string 3. i.e: w3 and x3.

i 2 1 1 3

wi 10111 1 1 10

xi 10 111 111 0

That is, w2. w1. w1. w3 = x2. x1. x1. x3 = 101111110 



• For instance, let m = 4,            i1 = 2, i2 = 1, i3 = 1, and i4 = 3

• (i.e.,) the solution is the list 2, 1, 1, 3

PCP has solution (i1,i2,i3,i4) = (2,1,1,3) 

• Note this solution is not unique. 

• For instance, 2, 1, 1, 3, 2, 1, 1, 3 is another solution. 



EXAMPLE 2:

Let Σ = {0,1}, A= {1,0,010,11} B={ 10,10,01,1}. Given an instance 

of PCP, tell whether this instance has a solution. 

• First we take the strings from the list A and B which starts 

from same symbol.

• W1 and x1 & w3 and x3 & w4 and x4  starts with same symbol 

1 and 0.

• String 2 w2 and x2 starts with different symbol.

• So let start with string 1. 

• Take w1 and x1.



i 1

wi 1

xi 10

• Next choose the string starts with 0 in w. 

• Either 2nd string or 3rd string.

• So now we can choose string 2. 

i 1 2

wi 1 0

xi 10 10



• Now the string in x remains. 01.

• Now choose string in w starts with 1. 

• Again we can choose either 1 or 4.

• So we will choose 1.

i 1 2 1

wi 1 0 1

xi 10 10 10



• Now the string in x remains. 010

• Now choose string in w starts with 0. 

• Again we can choose either 2 or 3.

• So we will choose 3.

i 1 2 1 3

wi 1 0 1 010

xi 10 10 10 01



• Now the string in x remains. 01

• Now choose string in w starts with 0. 

• Again we can choose either 2 or 3.

• So we will choose 3.

i 1 2 1 3 3

wi 1 0 1 010 010

xi 10 10 10 01 01



• Now the string in x remains. 1

• Now choose string in w starts with 1. 

• Again we can choose either 1 or 4.

• So we will choose 3.

i 1 2 1 3 3 4

wi 1 0 1 010 010 11

xi 10 10 10 01 01 1

That is, w1. w2. w1. w3. w3. w4 = x1. x2. x1. x3. x3. x4 = 10101001011



• For instance, let m = 6,      

• i1 = 1, i2 = 2, i3 = 1, i4 = 3, i5 = 3, i6 =4

• (i.e.,) the solution is the list 1,2,1,3,3,4

PCP has solution (i1,i2,i3,i4,i5,i6) = (1,2,1,3,3,4) 



MODIFIED PCP







List A (C) List B (D)

i wi xi

1 11 111

2 100 001

3 111 11



List A List B 

i wi xi

1 11 111

2 100 001

3 111 11

List C List D

i yi zi

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1



List A List B 

i wi xi

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

List C List D

i yi zi

0 *1*1* *1*1*1

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

Add row as y0 = *y1 , z0 = z1 



List A List B 

i wi xi

0 *1*1* *1*1*1

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

List C List D

i yi zi

0 *1*1* *1*1*1

1 1*1* *1*1*1

2 1*0*0* *0*0*1

3 1*1*1* *1*1

4 $ *$

Add row as yk+1 = $ and zk+1 = *$



MODIFIED PCP

 While considering y0,y2,y3 = z0,z2,z3, both are equal.

yi = zi

*1*1*1*0*0*1*1*1*$       = *1*1*1*0*0*1*1*1*$
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o teimuna 

S(, a ,a) -> ,e) 
& (a, o,o)>(, ¬) | 

er ouinal ' 

s(a,) (, e) 

es Non eminal s sA 

3 A B an &(, E, A)=(, B) * 

to Non TeAmenal S 

5S S oS1|A hen &(4,e,S)= (,os1),(4, A) 

tor N on Taminal A 

34 A IAols]£ then 

S (,e, A) -,1A),(, S) (4, e) 



Che CKna 

,olO.S) -(, o1cl, S) 
Sta, u 

, Stat Val 

9, o101, oSi) 

E , lol, S1) 

, lo, 1Ao1) 

, al, Ao) 

(, l, Eoi) 

F ,01, o1 

(,) 

-,E, E) 
OO NCP) . 



PDA TO CFGT 

*el PDA be P (G,,CS.90, Zo,F) 

dt CF01 he G -(V, T, P.S) 

wheeT-4y S 

Vasiabe u ad up ob &Fa) 

V 

S4te slack.alpha hot siate 

And all poSsibla Combtna-ions osiat 

tn 

To slproduckon 

& (ao, o. zo) = azo) 

Zo 

eS(o,a , Zo) = (qn, axx) 

1 , JL*J o Zo 



FRTo jnel V 
, 4.} \a a 

Stale Stack ophakat 

(1 ), a 

a4). [a a .] 

,, a possible ombinat 
Stales .) (. . 2,21 

hoblem A: Convant a qiuan PDA n e CFG. 

o, a, Zo) -o, a Zo) 

, a,a) = (qo, aa 
) , b, a) =(, E) 

wSl4,b a) -(, E) 

V&(, E,Z)=(. E) 
Su1 
dt PDA ,3,1,a,b,ozo) 

q0,Z 4) 



et C e (VT. ) e 
V 

Noe 

Aexe i1o, ,raTo 
Stale sAackalp Slal 

o), ), 

,, 

(ao) 
9aJ, 

oo, 

a Zo 



To ind Pdaeton 

' 

&(qo, ,Zo) - 96, a lo ) 

7--a -ze 
Zo ->a aJL-Z -JS 

Z ->a so a -]- 2 -J 

Zo-J->a -JL- Zo -

Zo -)->a a Zo 

Zo Ja a JL 7e 3 
o Zo J->a o aJL Zo 

9 a l a aJ J 

(Zo a [ a 9Jf Z 
t L zo 1 aLo a a jf Zo « 

Zo a. a J(.zo ] 
* Zo a Zo1 



(1o (, ,a)(qo, aa ) 
|o a a aJ 

a a 3,ao 

9oa9 3 a 3 a 4] 
]sa o a 3 a7 

3) 80,b, aj 4,E) 

0 a b 

) S (1, b, a) : (,E) 

5)S 1,t, z.)= (,E) 



&esunq Vosiable producton bo iKe 

Stet vaA >t, Stack, stJ 

>, Zo ,9.] S 

Zo, 



T Rakdart CFG GVT, P, S) tu 
V a )o Zo ],o a ].fc~ 

a9 Z ] ( a] (4z.].s} 
T-a,b S Stet sumb 

Zo ( a Zo e] 

Zo a 3,zo 

a9) a (o o ]o a J 

. [ta,J. ] 
a ae a4Ja j 

Zo E 

Zo 9) 
S o ) 

yw-. 


